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Abstract 

In software defect prediction, predictive 
models are estimated based on various 
code attributes to assess the likelihood of 
software modules containing errors. 
Many classification methods have been 
suggested to accomplish this task. How-
ever, association based classification me-
thods have not been investigated so far in 
this context. This paper assesses the use 
of such a classification method, CBA2, 
and compares it to other rule based classi-
fication methods. Furthermore, we inves-
tigate whether rule sets generated on data 
from one software project can be used to 
predict defective software modules in 
other, similar software projects. It is 
found that applying the CBA2 algorithm 
results in both accurate and comprehensi-
ble rule sets. 
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1. Introduction 

Developing high-quality software 
systems is a complex and usually very 
expensive task. It is therefore of crucial 
importance that software is developed 
with as few errors as possible. Different 
studies focusing on software defect 
prediction have been executed in the 
past[1]. To make the results of these 

studies more comparable, the use of 
public data repositories is advocated[2]. 
One such popular repository is the NASA 
data repository, containing twelve public 
available data sets[3]. By using the data 
sets provided, classification models can 
be estimated which estimate the 
probability a software module contains 
errors. Example module characteristics 
are Line Of Code (LOC), Halstead 
measures and McCabe Measures. A large 
number of classification methods have 
been suggested to build software defect 
prediction models: logistic regression, 
rule/tree-based methods such as C4.5 and 
RIPPER, and non-linear models like 
Neural Networks (NN), Support Vector 
Machines (SVM), and ensemble 
learners[1][4][5]. However, many of these 
studies focus on developing classification 
models with high performance, without 
detailing how these models work and 
make their predictions. 
Comprehensibility is of key importance 
for the industry acceptance of software 
defect prediction models. It is argued that 
even limited comprehensibility will 
positively influence the user acceptance 
of prediction models[6]. In this paper, an 
association rule classification method is 
proposed which derives a comprehensible 
rule set from the data. To our knowledge, 
this approach has not yet been applied to 
the domain of software defect prediction. 

In order to investigate whether 
classification algorithms based on 
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association rules are suitable for software 
defect prediction, we compared CBA2[7] 
with two other rule-based classification 
methods, i.e. C4.5[8] and RIPPER[9], 
across twelve public-domain benchmark 
data sets obtained from the NASA 
Metrics Data (MDP) repository[3] and the 
PROMISE repository[10]. Comparisons 
are based on the area under the receiver 
operating characteristics curve (AUC). As 
argued later in this paper, the AUC 
represents the most informative indicator 
of predictive accuracy within the field of 
software defect prediction. 

Furthermore, we also try to find 
whether rule sets learned on one data set 
are applicable to other data sets. 

This paper is organized as follows. In 
Section 2, we introduce a classification 
method based on association rules, CBA2. 
Section 3 details the evaluation measures 
used within the field of software defect 
and we argue that the AUC is the most 
appropriate metric in this context. Section 
4 discusses the setup, findings, and 
limitations of the study. Finally, a 
conclusion and topics for future work are 
presented. 

2. Classification based on Association 
Rule 

Association rule mining is stated as 
follows[11]: Let I = {i1, i2, …, im} be a 
set of items and D be a set of transactions 
(the dataset), where each transaction t (a 
data record) is a set of items such that t ⊆ 
I. An association rule is an implication of 
the form, X => Y, where X ⊂ I, Y ⊂ I are 
called itemsets, and X Y=∅. A 
transaction t is called to contain X, if X ⊆ 
t. The rule X => Y holds in the 
transaction set D with confidence c if c% 
of transactions in D that support X also 
support Y. The rule has support s in D if 
s% of the transactions in D contains X
Y. Given a set of transactions D (the 
dataset), the problem of mining 

association rules is to discover all rules 
that have support and confidence greater 
than the user-specified minimum support 
(called minsup) and minimum confidence 
(called minconf). An efficient algorithm 
for mining association rules is the Apriori 
algorithm[11], which was proposed by 
Agrawal and Srikant in 1994. 

A classification rule takes the form X 
=> C, where X is a set of data items, and 
C is the class (label) and a predetermined 
target. With such a rule, a transaction or 
data record t in a given database could be 
classified into class C if t contains X. 
Apparently, a classification rule could be 
regarded as an association rule of a 
special kind. CBA[12], proposed by Liu et 
al, is the earliest and most well-known 
classification algorithm based on 
association rule mining. CBA directly 
employs the Apriori-type approach for 
mining classification rules in form of X 
=> C and uses them to predict new data 
records based on user-defined threshold 
values of minsup and minconf. In this 
study, CBA2 was used[7], which modifies 
the way the algorithm sets the minsup 
during rule generation. CBA2 allows for 
different minsup values depending on the 
class (i.e., each class is assigned a 
different minsup), rather than using only 
a single minsup as in CBA. This 
potentially improves the classification 
performance in case of unbalanced class 
distribution. This is also the main reason 
we selected this method for software 
defect prediction. 

3. Evaluation Measures for Software 
Defect Prediction 

Discrete classifiers (i.e. classifiers with 
dichotomous outcomes) are routinely 
assessed using a confusion matrix. A 
confusion matrix summarizing the 
number of modules correctly or 
incorrectly classified as error prone (EP) 
or not error prone (NEP) by the classifier 
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is shown in Fig. 1, upper part. If TP, TN, 
FP, and FN represent respectively the 
number of true positives, true negatives, 
false positives, and false negatives, then a 
number of metrics can be defined: 
accuracy, sensitivity, and specificity, Fig. 
1 bottom part[13]. Note that accuracy 
tacitly assumes equal misclassification 
costs and an equal class distribution, 
which are both unrealistic in case of 
software defect prediction. A defect 
prediction model should identify as many 
error prone modules as possible while 
minimizing the false alarm rate. Suppose 
5% of the software modules contain one 
or more errors, a classifier predicting all 
modules to be not error prone would 
achieve an accuracy of 95%, while none 
of the erroneous modules are detected. It 
is clear that such a classifier is useless for 
the task of software defect prediction. 
 

 
 
Fig. 1: Confusion matrix and performance me-
trics for discrete classifiers. 
 

Due to the low number of error prone 
modules compared to the number of non 
error prone modules, other metrics such 
as AUC (Area Under ROC curve) are 
preferred[14]. The ROC (Receiver 
Operating Characteristics) curve is a two-
dimensional plot of sensitivity versus (1 – 
specificity), Fig 2. The (0,1) point 
represents the optimal classifier, while 
random guessing results in a classifier 
located on the diagonal. 

AUC has been previously adopted as 
an evaluation criterion in a number of 

software defect prediction studies, e.g. 
[1][5][15]. In order to make our findings 
easier comparable to other studies, 
accuracy, sensitivity, and specificity are 
also reported. 
 

 
 
Fig. 2: ROC curve (model trained on the KC1 
data set, evaluated on the JM1 data set). 
 

ROC analysis can only be applied in 
case of scoring classifiers (i.e. classifiers 
outputting a score which indicate the 
probability an instance belongs to a 
specific class). Rule sets are discrete by 
nature, providing only a dichotomous 
output. However, they can be converted 
into a scoring classifier following a 
number of approaches[14]. This can be 
typically done by creating multiple 
discrete classifiers and aggregating their 
output into a single score[16]. However, 
using such an ensemble method will 
result in an incomprehensible classifier. 

Alternatively, a scoring classifier can 
be constructed by ‘looking inside’ the 
classifier; in a rule set, each rule is 
characterized by its rule confidence, i.e. 
the number of modules correctly 
classified by a rule on a separate test 
set[17].  

This rule confidence can be used as a 
score associated with each observation 
from the test set to construct the ROC 
curve. In case of smaller data sets, 
Laplace correction can be applied to the 
rule confidence to smooth the 
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predictions[18]. However, as the data sets 
are sufficiently large, this was not done. 

4. Data Experiments 

In this section, the data sets used in this 
study are introduced and the setup of the 
experiment is detailed. Subsequently, the 
empirical results are provided followed 
by a discussion of the results. 
 

 
Table 1: Overview of data sets used in this 

study. 

4.1. Data set characteristics 

Table 1 provides an overview of the data 
sets used in this study. In total, twelve 
data sets are used to validate our 
approach. As can be seen from Table 1, 
the smallest data set contains 125 
observations whereas the largest data set 
contains 10,878 observations. Each 
observation refers to a single software 
subroutine, function, or method. Thus, in 
the remainder of the paper, a software 
module refers to such a subroutine, 
function, or method, and is characterized 
by Lines Of Code (LOC) based metrics, 
Halstead metrics, and McCabe 
Complexity measures. The number of 

defective modules is typically 
outnumbered by the non defective ones 
(last column). All data sets originate from 
the NASA MDP repository[3], and 
describe various space exploration related 
software projects such as flight software 
for an earth orbiting satellite (PC1 and 
PC4), a ground control system (KC1 and 
KC3), and NASA spacecraft system 
(CM1). 

4.2. Experiment Design 

CBA2 is compared to two other rule 
based classifiers, C4.5 rule[8] and 
RIPPER[9], across the 12 NASA MDP 
data sets. These techniques were selected 
as they are commonly used for software 
defect prediction.  

The different classifiers are validated 
(in terms of accuracy, sensitivity, 
specificity, and AUC) by randomly 
splitting the data in test and training set. 
More specifically, 2/3 of the data is used 
to train the model while the induced 
model is validated on the remaining 1/3 
of the data. The three classification 
techniques all exhibit adjustable 
parameters, also termed hyperparameters, 
which enable the adaptation of an 
algorithm to a specific problem. In the 
experiments, we adopted a grid-search 
approach to tune these hyperparameters.  

That is, a set of candidate values is 
defined for each hyperparameter and all 
possible combinations are evaluated 
empirically by means of a 10-fold cross 
validation on the training data. The 
parameter combination resulting in the 
highest performance is retained and a 
classification model is constructed on the 
whole training set1. 

                                                           
1 In case of C4.5 and RIPPER, the parameter tuning 
was done by maximizing the AUC value, while in 
case of CBA2, accuracy was used as the CBA soft-
ware package does not provide AUC values directly. 

Data set Attributes Modules Defects 

CM1 39 505 48 (9.50%) 

JM1 21 10878 2102 (19.3%) 

KC1 21 2105 325 (15.4%) 

KC3 39 429 43 (10.0%) 

KC4 39 125 61 (48.8%) 

MC1 39 4621 68 (1.47%) 

MC2 39 161 52 (32.3%) 

MW1 39 403 31 (7.69%) 

PC1 39 1059 76 (7.18%) 

PC2 39 4505 23 (0.51%) 

PC3 39 1511 160 (10.6%) 

PC4 39 1347 178 (13.2%) 
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Note: The best performing classifier is indicated in bold face. 
 

Table 2: Experimental results of CBA, C4.5 and RIPPER algorithms. 
 

In addition, we assessed whether rule 
sets induced by the CBA2 classifier on a 
particular data set can be extrapolated 
towards other data sets. The twelve data 
sets were divided into two groups 
according to the number of attributes. For 
each group, we used the rule set derived 
from one data set to make predictions on 
other data sets. As such, we assessed the 
performance of the rule set on the other 
data sets. The results for this external 
validation will be discussed in the next 
section. 

C4.5 and RIPPER classifiers are 
implemented using the WEKA software 
package[19]. As for the CBA2 classifier, 
the software is publicly available online 
at 
http://www.comp.nus.edu.sg/~dm2/p_do
wnload.html. The experiments were 
executed on a Windows XP based 
computer with Intel® Core 2 Duo™ 3.0 
GHz processor with 3.0 Gb RAM. 

4.3. Experimental Results 

Table 2 presents the values of accuracy, 
sensitivity, specificity, AUC, and the 
number of rules for the different 
classifiers on the twelve data sets. As 
stated earlier, the analysis primarily 

focuses on the AUC value for the 
different classifiers. For clarity, other 
metrics are also reported on. 

We found that in most cases (i.e. 8 out 
12), the CBA2 classifier is the best 
performing technique if looking at both 
AUC and sensitivity. In contrary, 
RIPPER outperforms the other techniques 
on most data sets as far as specificity is 
concerned. 

In addition, we also tested the 
significance of these measurements’ 
mean difference between any two 
algorithms by constructing a 95% 
confidence interval[20], Table 3. The 
testing results revealed that, on average, 
AUC and sensitivity values of CBA2 are 
significantly higher than for C4.5 and 
RIPPER. Furthermore, the accuracy of 
CBA2 was found to be not significantly 
different from that of C4.5 and RIPPER. 
In addition, the specificity of RIPPER 
was on average significantly higher than 
that of C4.5. 

Focusing on specificity and sensitivity, 
we conclude that CBA2 performs better 
than C4.5 and RIPPER. 

Focusing on the AUC values in Table 3, 
CBA2 performs better then the two other 
classification methods. We also found 
that in most cases, the CBA2 classifier 

Measures Methods CM1 JM1 KC1 KC3 KC4 MC1 MC2 MW1 PC1 PC2 PC3 PC4 

Accuracy 
(%) 

CBA2 80.36 73.52 83.71 90.91 85.37 95.00 69.81 91.04 91.78 99.20 86.48 83.96 
C4.5 85.12 80.31 81.34 85.31 78.05 98.70 60.38 90.30 88.39 99.00 89.26 88.64 

RIPPER 84.52 80.89 82.91 89.51 87.80 98.83 66.04 91.79 92.07 99.13 89.07 88.64 

Sensitivity 
CBA2 0.200  0.461  0.445  0.333  0.722  0.500  0.333  0.500  0.440  0.455  0.255  0.648  
C4.5 0.200  0.231  0.107  0.167  0.556  0.300  0.500  0.250  0.160  0.000  0.235  0.426  

RIPPER 0.300  0.243  0.182  0.333  0.778  0.350  0.167  0.250  0.240  0.091  0.333  0.500  

Specificity 
CBA2 0.885  0.801  0.910  0.962  0.957  0.956  0.886  0.919  0.954  0.994  0.934  0.866  
C4.5 0.939  0.940  0.960  0.916  0.957  0.996  0.520  0.944  0.939  0.998  0.967  0.949  

RIPPER 0.919  0.943  0.964  0.947  0.957  0.997  0.914  0.960  0.973  0.998  0.954  0.939  

AUC 
CBA2 0.598  0.688  0.836  0.696  0.835  0.862  0.671  0.860  0.827  0.809  0.821  0.885  
C4.5 0.645  0.710  0.711  0.597  0.874  0.817  0.573  0.597  0.601  0.783  0.726 0.917 

RIPPER 0.613  0.593  0.572  0.644  0.901  0.673  0.540  0.605  0.604  0.544  0.642 0.723 

Number of 
rules 

CBA2 18 12 16 37 3 30 8 10 33 18  47 9 
C4.5 9 71 23 14 4 14 7 2 16 11  23 14 

RIPPER 3 4 4 4 3 3 2 2 4 2  4 4 
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induces more rules than C4.5 and 
RIPPER. While we can observe an 
increase in AUC value in case of the 
CBA method, this apparently comes at 
the expense of a higher number of rules. 

 
Measure Value Interval Significance 

AUC 
CBA2-C4.5 [0.0051,0.1345] Yes 

CBA2-RIPPER [0.0751,0.2141] Yes 

Accuracy 
CBA2-C4.5 [-2.79%,3.85%] No 

CBA2-RIPPER [-3.63%,0.29%] No 

Sensitivity 
CBA2-C4.5 [0.0753,0.2847] Yes 

CBA2-RIPPER [0.0315,0.2227] Yes 

Specificity 
CBA2-C4.5 [-0.0795,0.0791] No 

CBA2-RIPPER [-0.0629,-0.0107] Yes 

 
Table 3: 95% confidence intervals on the 

mean difference for the AUC value of 
different classifiers. 

 
Data sets KC1 JM1 

KC1 --- < 
JM1 < --- 

 
Table 4: Results of global rule set of Group 1. 
 
Data sets CM1 KC3 KC4 MC1 MC2 MW1 PC1 PC2 PC3 PC4 

CM1 --- > < < < < < < < < 
KC3 < --- < < > > < < > < 
KC4 < < --- < < < < < < < 
MC1 < < < --- < < < < < < 
MC2 < < < < --- < < < < < 
MW1 < < < < < --- < < < < 
PC1 < < < < < < --- < < < 
PC2 < < < < < < < --- < < 
PC3 < < < < < < < < --- < 
PC4 < < < < < < < < < --- 

 
Table 5: Results of global rule set of Group 2. 
 

Table 4 and 5 show the results of the 
external rule set validation. In each table, 
the horizontal names are the names of the 
training set, while the vertical names are 
the data sets used for validation. As such, 
we compared the AUC value on a certain 

data set Di (AUCi) of Table 2 with the 
AUC value obtained by inducing the 
model on one data set and validating it on 
another (AUCj) using the CBA2 
Classifier. If AUCj is less than AUCi, 
then the symbol “<” was entered in the 
corresponding cell of the table, else the 
symbol “>” was used. 

From the results in Table 4 and 5, we 
observed that for all the 92 valid 
comparisons, only in four cases the “>” 
symbol was entered. This means that in 
most cases, the rule set derived from one 
particular data set by using the CBA2 
classifier would yield a lower 
performance then a rule set induced on 
the same data set. 

5. Conclusions and Future work 

This paper has investigated the 
performance of an association rule based 
classification method for software defect 
prediction problems. Data experiments 
were conducted to compare the CBA2 
classifier with two other rule/tree based 
classifiers (i.e. C4.5 and RIPPER), 
showing that the CBA2 method obtained 
satisfactory performance when compared 
to C4.5 and RIPPER, without losing 
comprehensibility. 

Future studies could focus on 
comparing more classification methods 
and improving association rule based 
classification methods by using an AUC-
based comparison framework for the 
domain of software defect prediction. 
Furthermore, the pruning of rules for 
association rule based classification 
methods will also be considered in our 
future work. 
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