
Software Defect Prediction Based on As-
sociation Rule Classification

Baojun Ma1 Karel Dejaeger2 Jan Vanthienen2 Bart Baesens2
1School of Economics and Management, Tsinghua University, 100084 Beijing, China

Email: mabj.03@sem.tsinghua.edu.cn
2Department of Decision Sciences and Information Management, K. U. Leuven, Belgium

Email: {Karel.Dejaeger, Jan.Vanthienen, Bart.Baesens}@econ.kuleuven.be

Abstract

In software defect prediction, predictive
models are estimated based on various
code attributes to assess the likelihood of
software modules containing errors.
Many classification methods have been
suggested to accomplish this task. How-
ever, association based classification me-
thods have not been investigated so far in
this context. This paper assesses the use
of such a classification method, CBA2,
and compares it to other rule based classi-
fication methods. Furthermore, we inves-
tigate whether rule sets generated on data
from one software project can be used to
predict defective software modules in
other, similar software projects. It is
found that applying the CBA2 algorithm
results in both accurate and comprehensi-
ble rule sets.

Keywords: Software defect prediction,
association rule classification, CBA2,
AUC

1. Introduction

Developing high-quality software
systems is a complex and usually very
expensive task. It is therefore of crucial
importance that software is developed
with as few errors as possible. Different
studies focusing on software defect
prediction have been executed in the
past[1]. To make the results of these

studies more comparable, the use of
public data repositories is advocated[2].
One such popular repository is the NASA
data repository, containing twelve public
available data sets[3]. By using the data
sets provided, classification models can
be estimated which estimate the
probability a software module contains
errors. Example module characteristics
are Line Of Code (LOC), Halstead
measures and McCabe Measures. A large
number of classification methods have
been suggested to build software defect
prediction models: logistic regression,
rule/tree-based methods such as C4.5 and
RIPPER, and non-linear models like
Neural Networks (NN), Support Vector
Machines (SVM), and ensemble
learners[1][4][5]. However, many of these
studies focus on developing classification
models with high performance, without
detailing how these models work and
make their predictions.
Comprehensibility is of key importance
for the industry acceptance of software
defect prediction models. It is argued that
even limited comprehensibility will
positively influence the user acceptance
of prediction models[6]. In this paper, an
association rule classification method is
proposed which derives a comprehensible
rule set from the data. To our knowledge,
this approach has not yet been applied to
the domain of software defect prediction.

In order to investigate whether
classification algorithms based on

396 © Atlantis Press, 2010

association rules are suitable for software
defect prediction, we compared CBA2[7]
with two other rule-based classification
methods, i.e. C4.5[8] and RIPPER[9],
across twelve public-domain benchmark
data sets obtained from the NASA
Metrics Data (MDP) repository[3] and the
PROMISE repository[10]. Comparisons
are based on the area under the receiver
operating characteristics curve (AUC). As
argued later in this paper, the AUC
represents the most informative indicator
of predictive accuracy within the field of
software defect prediction.

Furthermore, we also try to find
whether rule sets learned on one data set
are applicable to other data sets.

This paper is organized as follows. In
Section 2, we introduce a classification
method based on association rules, CBA2.
Section 3 details the evaluation measures
used within the field of software defect
and we argue that the AUC is the most
appropriate metric in this context. Section
4 discusses the setup, findings, and
limitations of the study. Finally, a
conclusion and topics for future work are
presented.

2. Classification based on Association
Rule

Association rule mining is stated as
follows[11]: Let I = {i1, i2, …, im} be a
set of items and D be a set of transactions
(the dataset), where each transaction t (a
data record) is a set of items such that t ⊆
I. An association rule is an implication of
the form, X => Y, where X ⊂ I, Y ⊂ I are
called itemsets, and X Y=∅. A
transaction t is called to contain X, if X ⊆
t. The rule X => Y holds in the
transaction set D with confidence c if c%
of transactions in D that support X also
support Y. The rule has support s in D if
s% of the transactions in D contains X
Y. Given a set of transactions D (the
dataset), the problem of mining

association rules is to discover all rules
that have support and confidence greater
than the user-specified minimum support
(called minsup) and minimum confidence
(called minconf). An efficient algorithm
for mining association rules is the Apriori
algorithm[11], which was proposed by
Agrawal and Srikant in 1994.

A classification rule takes the form X
=> C, where X is a set of data items, and
C is the class (label) and a predetermined
target. With such a rule, a transaction or
data record t in a given database could be
classified into class C if t contains X.
Apparently, a classification rule could be
regarded as an association rule of a
special kind. CBA[12], proposed by Liu et
al, is the earliest and most well-known
classification algorithm based on
association rule mining. CBA directly
employs the Apriori-type approach for
mining classification rules in form of X
=> C and uses them to predict new data
records based on user-defined threshold
values of minsup and minconf. In this
study, CBA2 was used[7], which modifies
the way the algorithm sets the minsup
during rule generation. CBA2 allows for
different minsup values depending on the
class (i.e., each class is assigned a
different minsup), rather than using only
a single minsup as in CBA. This
potentially improves the classification
performance in case of unbalanced class
distribution. This is also the main reason
we selected this method for software
defect prediction.

3. Evaluation Measures for Software
Defect Prediction

Discrete classifiers (i.e. classifiers with
dichotomous outcomes) are routinely
assessed using a confusion matrix. A
confusion matrix summarizing the
number of modules correctly or
incorrectly classified as error prone (EP)
or not error prone (NEP) by the classifier

397

The 2010 International Conference on E-Business Intelligence

is shown in Fig. 1, upper part. If TP, TN,
FP, and FN represent respectively the
number of true positives, true negatives,
false positives, and false negatives, then a
number of metrics can be defined:
accuracy, sensitivity, and specificity, Fig.
1 bottom part[13]. Note that accuracy
tacitly assumes equal misclassification
costs and an equal class distribution,
which are both unrealistic in case of
software defect prediction. A defect
prediction model should identify as many
error prone modules as possible while
minimizing the false alarm rate. Suppose
5% of the software modules contain one
or more errors, a classifier predicting all
modules to be not error prone would
achieve an accuracy of 95%, while none
of the erroneous modules are detected. It
is clear that such a classifier is useless for
the task of software defect prediction.

Fig. 1: Confusion matrix and performance me-
trics for discrete classifiers.

Due to the low number of error prone
modules compared to the number of non
error prone modules, other metrics such
as AUC (Area Under ROC curve) are
preferred[14]. The ROC (Receiver
Operating Characteristics) curve is a two-
dimensional plot of sensitivity versus (1 –
specificity), Fig 2. The (0,1) point
represents the optimal classifier, while
random guessing results in a classifier
located on the diagonal.

AUC has been previously adopted as
an evaluation criterion in a number of

software defect prediction studies, e.g.
[1][5][15]. In order to make our findings
easier comparable to other studies,
accuracy, sensitivity, and specificity are
also reported.

Fig. 2: ROC curve (model trained on the KC1
data set, evaluated on the JM1 data set).

ROC analysis can only be applied in
case of scoring classifiers (i.e. classifiers
outputting a score which indicate the
probability an instance belongs to a
specific class). Rule sets are discrete by
nature, providing only a dichotomous
output. However, they can be converted
into a scoring classifier following a
number of approaches[14]. This can be
typically done by creating multiple
discrete classifiers and aggregating their
output into a single score[16]. However,
using such an ensemble method will
result in an incomprehensible classifier.

Alternatively, a scoring classifier can
be constructed by ‘looking inside’ the
classifier; in a rule set, each rule is
characterized by its rule confidence, i.e.
the number of modules correctly
classified by a rule on a separate test
set[17].

This rule confidence can be used as a
score associated with each observation
from the test set to construct the ROC
curve. In case of smaller data sets,
Laplace correction can be applied to the
rule confidence to smooth the

398

The 2010 International Conference on E-Business Intelligence

predictions[18]. However, as the data sets
are sufficiently large, this was not done.

4. Data Experiments

In this section, the data sets used in this
study are introduced and the setup of the
experiment is detailed. Subsequently, the
empirical results are provided followed
by a discussion of the results.

Table 1: Overview of data sets used in this

study.

4.1. Data set characteristics

Table 1 provides an overview of the data
sets used in this study. In total, twelve
data sets are used to validate our
approach. As can be seen from Table 1,
the smallest data set contains 125
observations whereas the largest data set
contains 10,878 observations. Each
observation refers to a single software
subroutine, function, or method. Thus, in
the remainder of the paper, a software
module refers to such a subroutine,
function, or method, and is characterized
by Lines Of Code (LOC) based metrics,
Halstead metrics, and McCabe
Complexity measures. The number of

defective modules is typically
outnumbered by the non defective ones
(last column). All data sets originate from
the NASA MDP repository[3], and
describe various space exploration related
software projects such as flight software
for an earth orbiting satellite (PC1 and
PC4), a ground control system (KC1 and
KC3), and NASA spacecraft system
(CM1).

4.2. Experiment Design

CBA2 is compared to two other rule
based classifiers, C4.5 rule[8] and
RIPPER[9], across the 12 NASA MDP
data sets. These techniques were selected
as they are commonly used for software
defect prediction.

The different classifiers are validated
(in terms of accuracy, sensitivity,
specificity, and AUC) by randomly
splitting the data in test and training set.
More specifically, 2/3 of the data is used
to train the model while the induced
model is validated on the remaining 1/3
of the data. The three classification
techniques all exhibit adjustable
parameters, also termed hyperparameters,
which enable the adaptation of an
algorithm to a specific problem. In the
experiments, we adopted a grid-search
approach to tune these hyperparameters.

That is, a set of candidate values is
defined for each hyperparameter and all
possible combinations are evaluated
empirically by means of a 10-fold cross
validation on the training data. The
parameter combination resulting in the
highest performance is retained and a
classification model is constructed on the
whole training set1.

1 In case of C4.5 and RIPPER, the parameter tuning
was done by maximizing the AUC value, while in
case of CBA2, accuracy was used as the CBA soft-
ware package does not provide AUC values directly.

Data set Attributes Modules Defects

CM1 39 505 48 (9.50%)

JM1 21 10878 2102 (19.3%)

KC1 21 2105 325 (15.4%)

KC3 39 429 43 (10.0%)

KC4 39 125 61 (48.8%)

MC1 39 4621 68 (1.47%)

MC2 39 161 52 (32.3%)

MW1 39 403 31 (7.69%)

PC1 39 1059 76 (7.18%)

PC2 39 4505 23 (0.51%)

PC3 39 1511 160 (10.6%)

PC4 39 1347 178 (13.2%)

399

The 2010 International Conference on E-Business Intelligence

Note: The best performing classifier is indicated in bold face.

Table 2: Experimental results of CBA, C4.5 and RIPPER algorithms.

In addition, we assessed whether rule
sets induced by the CBA2 classifier on a
particular data set can be extrapolated
towards other data sets. The twelve data
sets were divided into two groups
according to the number of attributes. For
each group, we used the rule set derived
from one data set to make predictions on
other data sets. As such, we assessed the
performance of the rule set on the other
data sets. The results for this external
validation will be discussed in the next
section.

C4.5 and RIPPER classifiers are
implemented using the WEKA software
package[19]. As for the CBA2 classifier,
the software is publicly available online
at
http://www.comp.nus.edu.sg/~dm2/p_do
wnload.html. The experiments were
executed on a Windows XP based
computer with Intel® Core 2 Duo™ 3.0
GHz processor with 3.0 Gb RAM.

4.3. Experimental Results

Table 2 presents the values of accuracy,
sensitivity, specificity, AUC, and the
number of rules for the different
classifiers on the twelve data sets. As
stated earlier, the analysis primarily

focuses on the AUC value for the
different classifiers. For clarity, other
metrics are also reported on.

We found that in most cases (i.e. 8 out
12), the CBA2 classifier is the best
performing technique if looking at both
AUC and sensitivity. In contrary,
RIPPER outperforms the other techniques
on most data sets as far as specificity is
concerned.

In addition, we also tested the
significance of these measurements’
mean difference between any two
algorithms by constructing a 95%
confidence interval[20], Table 3. The
testing results revealed that, on average,
AUC and sensitivity values of CBA2 are
significantly higher than for C4.5 and
RIPPER. Furthermore, the accuracy of
CBA2 was found to be not significantly
different from that of C4.5 and RIPPER.
In addition, the specificity of RIPPER
was on average significantly higher than
that of C4.5.

Focusing on specificity and sensitivity,
we conclude that CBA2 performs better
than C4.5 and RIPPER.

Focusing on the AUC values in Table 3,
CBA2 performs better then the two other
classification methods. We also found
that in most cases, the CBA2 classifier

Measures Methods CM1 JM1 KC1 KC3 KC4 MC1 MC2 MW1 PC1 PC2 PC3 PC4

Accuracy
(%)

CBA2 80.36 73.52 83.71 90.91 85.37 95.00 69.81 91.04 91.78 99.20 86.48 83.96
C4.5 85.12 80.31 81.34 85.31 78.05 98.70 60.38 90.30 88.39 99.00 89.26 88.64

RIPPER 84.52 80.89 82.91 89.51 87.80 98.83 66.04 91.79 92.07 99.13 89.07 88.64

Sensitivity
CBA2 0.200 0.461 0.445 0.333 0.722 0.500 0.333 0.500 0.440 0.455 0.255 0.648
C4.5 0.200 0.231 0.107 0.167 0.556 0.300 0.500 0.250 0.160 0.000 0.235 0.426

RIPPER 0.300 0.243 0.182 0.333 0.778 0.350 0.167 0.250 0.240 0.091 0.333 0.500

Specificity
CBA2 0.885 0.801 0.910 0.962 0.957 0.956 0.886 0.919 0.954 0.994 0.934 0.866
C4.5 0.939 0.940 0.960 0.916 0.957 0.996 0.520 0.944 0.939 0.998 0.967 0.949

RIPPER 0.919 0.943 0.964 0.947 0.957 0.997 0.914 0.960 0.973 0.998 0.954 0.939

AUC
CBA2 0.598 0.688 0.836 0.696 0.835 0.862 0.671 0.860 0.827 0.809 0.821 0.885
C4.5 0.645 0.710 0.711 0.597 0.874 0.817 0.573 0.597 0.601 0.783 0.726 0.917

RIPPER 0.613 0.593 0.572 0.644 0.901 0.673 0.540 0.605 0.604 0.544 0.642 0.723

Number of
rules

CBA2 18 12 16 37 3 30 8 10 33 18 47 9
C4.5 9 71 23 14 4 14 7 2 16 11 23 14

RIPPER 3 4 4 4 3 3 2 2 4 2 4 4

400

The 2010 International Conference on E-Business Intelligence

induces more rules than C4.5 and
RIPPER. While we can observe an
increase in AUC value in case of the
CBA method, this apparently comes at
the expense of a higher number of rules.

Measure Value Interval Significance

AUC
CBA2-C4.5 [0.0051,0.1345] Yes

CBA2-RIPPER [0.0751,0.2141] Yes

Accuracy
CBA2-C4.5 [-2.79%,3.85%] No

CBA2-RIPPER [-3.63%,0.29%] No

Sensitivity
CBA2-C4.5 [0.0753,0.2847] Yes

CBA2-RIPPER [0.0315,0.2227] Yes

Specificity
CBA2-C4.5 [-0.0795,0.0791] No

CBA2-RIPPER [-0.0629,-0.0107] Yes

Table 3: 95% confidence intervals on the

mean difference for the AUC value of
different classifiers.

Data sets KC1 JM1

KC1 --- <
JM1 < ---

Table 4: Results of global rule set of Group 1.

Data sets CM1 KC3 KC4 MC1 MC2 MW1 PC1 PC2 PC3 PC4

CM1 --- > < < < < < < < <
KC3 < --- < < > > < < > <
KC4 < < --- < < < < < < <
MC1 < < < --- < < < < < <
MC2 < < < < --- < < < < <
MW1 < < < < < --- < < < <
PC1 < < < < < < --- < < <
PC2 < < < < < < < --- < <
PC3 < < < < < < < < --- <
PC4 < < < < < < < < < ---

Table 5: Results of global rule set of Group 2.

Table 4 and 5 show the results of the
external rule set validation. In each table,
the horizontal names are the names of the
training set, while the vertical names are
the data sets used for validation. As such,
we compared the AUC value on a certain

data set Di (AUCi) of Table 2 with the
AUC value obtained by inducing the
model on one data set and validating it on
another (AUCj) using the CBA2
Classifier. If AUCj is less than AUCi,
then the symbol “<” was entered in the
corresponding cell of the table, else the
symbol “>” was used.

From the results in Table 4 and 5, we
observed that for all the 92 valid
comparisons, only in four cases the “>”
symbol was entered. This means that in
most cases, the rule set derived from one
particular data set by using the CBA2
classifier would yield a lower
performance then a rule set induced on
the same data set.

5. Conclusions and Future work

This paper has investigated the
performance of an association rule based
classification method for software defect
prediction problems. Data experiments
were conducted to compare the CBA2
classifier with two other rule/tree based
classifiers (i.e. C4.5 and RIPPER),
showing that the CBA2 method obtained
satisfactory performance when compared
to C4.5 and RIPPER, without losing
comprehensibility.

Future studies could focus on
comparing more classification methods
and improving association rule based
classification methods by using an AUC-
based comparison framework for the
domain of software defect prediction.
Furthermore, the pruning of rules for
association rule based classification
methods will also be considered in our
future work.

Acknowledgements

The work was partly supported by the
National Natural Science Foundation of
China (70890080), the MOE Project of
Key Research Institute of Humanities and

401

The 2010 International Conference on E-Business Intelligence

Social Sciences at Universities of China
(7JJD63005), and Tsinghua-Leuven
Research Cooperation Project
(3H051154). We also extend our
gratitude to the Flemish Research Fund
for the financial support to the authors
(Odysseus grant G.0915.09).

References

[1] C. Catal, and B. Diri, “A systematic re-
view of software fault prediction studies,”
Expert Systems With applications,
36(4):7346-7354, 2009.

[2] C. Mair, M. Shepperd, and J. Magne, “An
Analysis of Data Sets Used to Train and
Validate Cost Prediction Systems,” ACM
SIGSOFT Software Engineering Notes,
30(4):1-6, 2005.

[3] M. Chapman, P. Callis, and W. Jackson,
“Metrics data programs,” Retrieved from
NASA IV and V facility:
http://mdp.ivv.nasa.gov, 2004.

[4] I. Gondra, “Applying machine learning to
software fault-proneness prediction,” The
Journal of Systems and Software,
81(2):186-195, 2008.

[5] S. Lessmann, B. Baesens, C. Mues, and S.
Pietsch, “Benchmarking Classification
Models For Software Prediction: A Pro-
posed Framework and Novel Findings,”
IEEE Transactions on Software Engineer-
ing, 34(4):485-496, 2008.

[6] G. Fung, S. Sandilya, and R.B. Rao,
“Rule extraction form linear support vec-
tor machines,” Proceedings of the ele-
venth ACM SIGKDD International Confe-
rence on Knowledge discovery in data
mining, pp. 32-40, 2005.

[7] B. Liu, Y. Ma, C.K. Wong, “Improving
an association rule based classifier,” In
Proceedings of the Fourth European Con-
ference on Principles and Practice of
Knowledge Discovery in Databases
(PKDD-2000), pp. 504-509, 2000.

[8] J.R. Quinlan, “C4.5: Programs for
Machine Learning,” Morgan Kauf-
man, 1993.

[9] W.W. Cohen, “Fast Effective Rule Induc-
tion,” In: Twelfth International Confe-
rence on Machine Learning, pp. 115-123,
1995.

[10] J.S. Shirabad, and T.J. Menzies, “The
PROMISE Repository of Software Engi-
neering Databases,” School of Informa-
tion Technology and Eng., Univ. of Otta-
wa,http://promise.site.uottawa.ca/SERepo
sitory, 2005.

[11] R. Agrawal, and R. Srikant, “Fast algo-
rithm for mining association rules,” Pro-
ceeding of the 20th VLDB conference, pp.
487-499, 1994.

[12] B. Liu, W. Hsu, and Y. Ma, “Integrity
classification and association rule min-
ing,” Proceeding of the Fourth Interna-
tional Conference on Knowledge Discov-
ery and Data Mining, pp. 80-86, 1998.

[13] D.G. Altman, and J.M. Bland, “Diagnos-
tic tests 1: Sensitivity and specificity,”
BMJ, 308, 1552, 1994.

[14] T. Fawcett, “An introduction to ROC
analysis,” Pattern Recognition Letters,
27(8): 861–874, 2006.

[15] C. Catal, and B. Diri, “Investigating the
effect of dataset size, metric sets, and fea-
ture selection techniques on software fault
prediction problem,” Information
Sciences, 179(8):1040-1058, 2009.

[16] L. Breiman, “Bagging predictors,” Ma-
chine Learning, 24(2):123-140, 1996.

[17] I. Witten, and E. Frank, “Data mining:
Practical Machine Learning Tools and
Techniques,” Morgan Kaufmann, 2005.

[18] T. Fawcett, “Using Rule Sets to Maximize
ROC Performance,” Proceedings of the
2001 IEEE International Conference on
Data Mining, pp. 131-138, 2001.

[19] S. Weiss, and C. Kulikowski, “Computer
Systems that Learn: Classification and
Prediction Methods from Statistics, Neur-
al Nets, Machine Learning, and Expert
Systems,” Morgan Kaufman, 1991.

[20] T.R. Harshbarger, “Introductory Statistics:
A Decision Map, Second edition,” Mac-
millan Publishing Co., Inc. New York,
Collier Macmillan Publishers, London,
1977.

402

The 2010 International Conference on E-Business Intelligence

