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Abstract

Purpose — The purpose of this paper is to propose a framework for describing and evaluating the
representativeness of a small set of search results extracted from the original results: this is deemed
desirable in information retrieval in enterprise information systems.

Design/methodology/approach — The paper proposes a combined measure, namely RFg, to
evaluate the extracted small set in terms of the notions of coverage and redundancy. Data experiments
were conducted on three different extraction strategies to evaluate the representativeness, i.e. coverage
and redundancy.

Findings — Both from intuitive and experimental perspectives, the proposed coverage measure,
redundancy measure and RFg measure could effectively evaluate the representativeness.

Research limitations/implications — The search results, e.g. in the form of documents and texts,
are modeled using a vector space model and cosine similarity. Semantic models and linguistic models
could be further introduced into this research to improve the proposed measures.

Practical implications — With the rapidly growing need for information retrieval in enterprise
information systems, the representativeness of search results become more desirable and important
for search engine users. The well-designed representativeness measures will help them achieve
satisfactory results.

Originality/value — The originality of the paper lies in the definition of representativeness of a small
set of search results extracted from the original results. This focuses on the two aspects of coverage
rate and redundancy rate both from intuitive and experimental perspectives.

Keywords Information retrieval, Representativeness, Coverage, Redundancy, Set theory,
Information systems

Paper type Research paper

1. Introduction

Information retrieval (IR) (Liu, 2007), as one of the key technologies adopted by search
engines (Spink and Jansen, 2004), not only is widely used for public web search, but
also plays a more important role in enterprise information systems (Hawking, 2004;
Balog, 2007; Broder and Ciccolo, 2004). In enterprise information management, the
major challenge faced by information retrieval is to effectively and efficiently organize
huge amounts of data from multiple sources, e.g. internet, intranet, file systems,
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document management systems, OA system, internal blogs, transaction databases,
etc., and then present a consolidated list of quality-ranked contents, e.g. records and
web pages, from these various sources (Hawking, 2004; Broder and Ciccolo, 2004).

In real-world information retrieval applications in enterprises, a search engine may
often generate a huge volume, e.g. in size of thousands of search results (e.g. web pages,
documents, texts, records), all of which satisfy the search criteria but could hardly be
browsed one-by-one by users. Usually, users would prefer a small set of search results
that appear in the first couple of web pages and have a good quality of the search. This
1s deemed meaningful and important to search engine users, as most users do not seem
to be interested (or become much less interested) in browsing the search results that are
displayed in later pages. Particularly in a mobile search environment (e.g. with cell
phones) that is getting popular and pervasive nowadays in businesses and social lives,
browsing many later pages is neither interesting nor practical. Thus, the quality of a
small set of results to be top-ranked and displayed to users is of great interest to both
academia and practitioners.

Nevertheless, since different users may have discrepant search requirements even
with same keywords, different criteria of are used for evaluating the quality of IR. Many
quality measures are concerned with the relevance between keywords and search results
(Zhu et al, 2009), such as recall, precision (Kraft and Bookstein, 1978) and some
combined measures (e.g. F-value (van Rijsbergen, 1979), R-precision, MAP (Buckley and
Voorhees, 2000), NDCG (Sakai, 2007) and so on (Manning et al., 2009)). However, given a
specific keyword, which is quite short normally, all of the search results are highly
relevant to the keyword, ie. containing the keyword, which means that relevance
(e.g. precision) is not a problem, but cannot be used to effectively filter out a small set for
users. Thereafter, some other quality measures should be considered, e.g. PageRank
measure (Page ef al., 1998), etc., to further rank the search results by their “importance”
or “hotness”. Moreover, with top-% (ranking) extraction method, which is widely used in
web search and information retrieval (Guntzer et al., 2000; Bruno et al., 2002; Fagin et al.,
2003; Ilyas et al., 2008; Mamoulis et al., 2007; Marian et al., 2004), the & search results with
the highest values for certain ranking function from the original set could be obtained
and presented to users. In general, the ranking function is based on some attributes of
search results, e.g. the freshness of time, the number of visits, the number of comments,
the “hotness”, the “importance”, etc. (Lian and Chen, 2009; Papadias et al., 2005; Yiu and
Mamoulis, 2009). From semantic and intuitive perspective, this method tries to obtain
the most “important” search results.

Top-k extraction with some measures can present users with satisfactory,
e.g. top-hotness-ranked, results in many cases. nevertheless, information retrieval in
enterprise still face some new challenges. First, the top-ranked results, e.g. on the first
several pages, cannot effectively reflect the overall information of all retrieved search
results. In web search, it is generally not a severe problem, since users of web search
usually prefer to get the basic information in the first piece of all search results. For
search in enterprise information systems, however, users may sometimes prefer to get a
clear view of the whole results satisfying the search keyword. For example, in a Wiki
system of an enterprise, if a user wants to query and review some knowledge, he/she
may prefer to get more overviewed information of all results relevant to the keyword,
while the top-ranked results can only represent a very limited part of the overall
information. Thus, how to evaluate the information covered by the small set referred the
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whole set is worthy to analyze and can help extract a better representative set. Second, it
is not seldom seen that, the top-ranked results are sometimes redundant in contents.
This is because that multiple data sources in enterprise information systems may
contain many similar and duplicated contents (Hawking, 2004; Balog, 2007; Broder and
Ciccolo, 2004), and differentiation of results on content is a new challenge for search
engine. In this case, users may be presented with results containing redundant contents,
which not only decreases the quality of information retrieval but significantly impact
users’ search experience. Thereafter, how to evaluate the redundancy of a set of results is
also one of the important aspects of information retrieval.

In this paper, we focus on the quality of search in enterprise information
management, in light of representativeness, on two respects: one is the coverage
measure referring to the number of the results in the original set “covered” by the
extracted small set of results; the other is the redundancy measure referring to the
number of “redundant” results in the extracted small set. These two measures reflect
the representativeness of a small set referred to the original set in two different ways.
Merely for illustrative purposes, let us first consider a simplified crisp case where the
original collection of retrieved results is {A, B, C, C, D} with one extra duplicated C,
and a small set with three results could be browsed by users. Given two derived small
sets {A, B, C} and {A, C, C}, the former can cover four results and the latter can cover
three results, respectively, whereas the latter is more redundant than the former. In this
case, the collection {A, B, C} will be more suitable to be presented to users than {A, C,
C}, since it can convey more information to users and is less redundant. Furthermore,
for this example, {A, B, C, C, D} could be clustered into four sets, i.e. {A}, {B}, {C, C}
and {D}, in which one result could be extracted to finally construct a new set, i.e. {A, B,
C, D}. Thereafter, {A, B, C, D} can cover the overall information of {A, B, C, C, D} and
1s non-redundant, which is called a representative set.

In usual search cases, however, the search results (documents, web pages, texts, etc.)
are generally close/similar to each other (e.g. via text similarity) on contents. It is easy
to encounter a situation where some search results are almost identical or highly
similar. This may be, on one hand, a reflection on a frequent attention to something, or
on the other hand a reflection on a highly duplicate piece of information. Such an
example can be a number of work documents, each being a cited report on the same act
from a single source, which reads similar but is hardly interesting. In doing so, not only
the coverage measure and redundancy measure should be further extended in the
framework of text similarity, but fuzzy clustering methods with text similarities should
also be conducted to help derive clusters, in which the results are quite similar to each
other, to help extract the representative set with high coverage and low redundancy.
As a matter of fact, a combined view of representativeness in coverage and redundancy
is deemed desirable, which motivates the effort of this study.

This paper is organized as follows. Section 2 briefly introduces some related works
on existed measures to evaluate the search quality and existed methods to extract a
small set from the original set of search results. In section 3, the coverage measure and
redundancy measure are defined and discussed with some important properties, based
on which the combined RF g measure is introduced. To evaluate the effectiveness of the
proposed measures, some empirical experiments are conducted and discussed in
section 4. Finally, some concluding remarks are presented in section 5.



2. Related works

Generally, high representativeness of a small set referred to the original set has the
intuitive meaning that the small set covers high fraction of information of the large set
while itself possesses little information redundancy.

To evaluate the coverage of a small set referred to an original set, researchers have
done some works, e.g. subtopic recall at rank K (Zhai et al, 2003), Representative
Coverage (Pan et al., 2005). To evaluate information redundancy between two search
results, several measurements like Kullback-Leibler divergence (Pan et al., 2005; Zhai
et al., 2003; Zhang et al., 2002), cosine-similarity-type measure (Zhang et al., 2002) and
keyword number of the intersection of two keyword sets of documents (Zhang ef al.,
2002), maximum similarity (Carbonell and Goldstein, 1998) have been proposed.
Nevertheless, these works did not take coverage and redundancy into a unified
framework, and could not be easily implanted into search engine in enterprise
information management.

Normally, clustering methods are deemed effective to extract a representative set
referred an original set (Liu, 2007; Han and Kamber, 2006). Generally speaking,
clustering is a unsupervised classification of a given set of search results into clusters
such that the results within each cluster are similar to each other, and the results from
different clusters are dissimilar to each other (Aliguliyev, 2009; Carpineto ef al., 2009;
Liu, 2007; Han and Kamber, 2006; Hastie ef al., 2001; Grabmeier and Rudolph, 2002;
Jain et al, 1999). Thus, with the original set of search results, given a clustering
method, % clusters/sets could be derived, in each of which a search result with the
maximum similarities to other results in the cluster could be extracted as the
representative result, since the result can cover maximum information of all the results
in the cluster. Moreover, since the % results are from % clusters respectively, where the
similarities among different clusters are low, the % results will be mutually less
redundant on content. Thereafter, the finally derived set of % representative results
from % clusters respectively is called the representative set, which not only can cover
the information of the original set to a large extent, but is low redundant.

There exist many types of clustering methods, e.g. k-means clustering methods,
graph-based clustering methods, agglomerative based clustering methods (Aliguliyev,
2009; Carpineto et al, 2009; Liu, 2007; Han and Kamber, 2006; Hastie et al., 2001;
Grabmeier and Rudolph, 2002; Jain et al, 1999). With these methods, some
representative set could extracted, which tend to be with high coverage and low
redundancy. In the following discussions, a well-known &-means clustering method, i.e.
Direct, is considered for evaluating the proposed coverage measure, redundancy
measure, as well as a combined measure.

3. Evaluation measures of representativeness

Let us concentrate our discussion on the quality of a small set out of the set of overall
search results. Given a set of # search results, e.g. D = {dy, ds, ..., d,}, where d; is a
search result, 7 = 1, ..., n, then an IR method £ is to extract £ documents from D (¢ =
n) under certain criteria, resulting in DZ, where DX C D. This paper is to investigate
the representativeness of D~ with respect to D on two aspects: the degree that D can
cover the information of D (i.e. the coverage rate); and the degree of redundancy
existing in DZ (i.e. the redundancy rate). Intuitively, given D and %, a good IR method is
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to extract a D £ with as large coverage rate as possible and as small redundancy rate as
possible.

3.1 Coverage measure

For two search results dand &, we call d is close to d with degree F(d, d’) € [0, 1], where
Fdd, d) is the degree of similarity/closeness, which is reflexive and symmetric and can
be calculated with cosine-similarity measure (Baeza-Yates and Ribeiro-Neto, 1999; Liu,
2007; Manning et al., 2009; Salton, 1971). Thus, given two sets of documents D and I and
adocumentd € D, D is called to cover d with degree = maxycp(Fc(d', d)). Moreover,
the rate that I covers D (i.e. the coverage rate r(Y, D)) could be defined as follows:

re@, D)=y" (max(feclg,dc d)) /1D) (1)

deD

where |D| is the number of documents in D.

For example, first consider a crisp case (i.e. F{d, d) =1 if d' = d, otherwise 0).
SupposeD {A,B,C,C, D} DE = {A B, C, C} and DE = {A, B, C}. Then we have
roD%, D 4/5 and 7(D5, D) = 4/5, because both cover four documents in D.
Furthermore in a closeness case with the closeness measure F(d', d) = |d' N d|/4
(1e ld N dl represents the number of elements that ¢ and d share), suppose

= {ABCD, ABCE, FGHI, FGHI, FGH] }, D¥ = {ABCD, ABCE, FGHJ} and
DE = {ABCE, FGHI} we have rdD¥, D) = 9/10 and (D%, D) = 9/10 as well.
Note that both D¥ and D% cover the same number of search results on contents.
However, they have different levels of redundancy, which will be discussed in the next
section.

Moreover, the coverage rate has the following properties:

c 0=rdD,D) = 1
s UD=D,ro0,D)y=1ifD=Cand D # I, v, D)=0.
« 7D, D) # rdD, D), except for D=D or |D| = |D'| = 1.
« IfD C D, then0 < 7D, D) = 1and roD, D) = 1.
« IfD C D, thenrdDD, D)= rdD, D).
* DenoteD — D= 1{d|d € Dandd & D'},ifD— D # & thenrd(DD,D — D)
= rdD, D).
where D, I) and I) are nonempty sets of search results.

3.2 Redundancy measure
For a set D and a document d, d € D, the degree that d is redundant in D is
1 — 1/24epfdd, d). Furthermore, the redundancy rate of D could be defined:

D) =Y (1 -1/ Fed, d)) /1D @)
deD d'eD

Referring to the above examples, in the crisp case, 7p(D¥) = 1/4 and rR(DE )y=0.In
the closeness case, rR(DF ) =2/7 and rR(DF )y=0.Ina combmed view, in e1ther case,



D¥% is considered better in representativeness than D ¥ since D% has the same degree of
coverage as DY but a lower degree of redundancy than D¥. Moreover, for any
nonempty set D, the redundancy rate has the following properties:

c 0=rpD) < 1.

« rp(D)=0,if [D| = 1.

« rp(D)=0,if F(d,d)=0,Vd,d € D,d # d,|D| > 1.
« rpD)=1-1|D\|,if Fd, d)=1,Vd,d € D, d # d.

If asearchresultd,d € D,iswith 1 - 1/2gepFdd, d) > rg(D), then rp(D — {d}) <
YR(D).

3.3 RF g measure combining coverage and redundancy

As discussed in the previous section, high representativeness means high coverage and
low redundancy. Hence, a combined view is regarded necessary. In sprit of recall,
precision and Fjz (Kraft and Bookstein, 1978; van Rijsbergen, 1979), a combined
measure, namely KFg, could be defined as follows:

1

/ —
Ko D = e Dy + (= @ ] (= D)

_ (B + Dre@, D) x (A — 1) 3)
B2 Xrc', D)+ (1 = rrD")

Where B2 = (1 - a))a, « € [0,1], B8 € [0, + ). RF s, D) is a weighted harmonic
mean of coverage rate and redundancy rate, where « or B reflects users’ preference on
coverage and non-redundancy. If 0 = o < 0.5 (8 > 1), it means that users prefer more
on non-redundancy than coverage, and if 0.5 < o = 1 (0 = 8 < 1), it means that users
prefer more on coverage than non-redundancy. If « = 0.5 (8 = 1), it means that user
treats coverage and non-redundancy equally. In addition, we have:

-« 0= RFD,D) =

+ Given a certain a (B), RFg(IY, D) increases monotonously with (I, D)’'s
increase and decreases monotonously with 7p(I))’s increase.

Take the same example as ShOWl’l in the previous section, with a = 0.5 (8 = 1), in the
crisp case, we have RF (D LD)=24/31< 8/9 RF B(DF , D), while in the closeness
Case RF B(D T, D)=90 / 113 < 18/19 = RF ﬁ(D 5, D), which conforms to the fact that
D¥ has a higher level of representativeness that D%

4. Empirical data experiments
In order to verify the coverage measure and redundancy measure, some empirical data
experiments were conducted to compare the top-k search results of Google search
engine, 1.e. Google-k strategy, with the % representative results by clustering method,
L.e. Clustering strategy, as well as k results selected using Random extraction strategy,
1.e. Random strategy.

Usually, Google provides (in display) around 1,000 result items relevant to query
keywords (though the total number of the results (e.g. millions of items) is often
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Figure 1.
The coverage rates and
redundancy rates (k = 10)

indicated), which can be regarded as the original set D. However, users normally only
browse the first several pages, e.g. k search results (¢ < 1,000), to search their
preferred documents. Though Google’s first £ search results, ie. with Google-%
strategy, were with high PageRank values and might have been diversified
considering similarity, many search results were still found quite similar, e.g. the
hottest content relevant to keywords usually appears frequently in different search
results, which may imply high information coverage but high redundancy. In
Clustering strategy, the Direct method is used to cluster D into £
information-equivalent classes with k-means methodology and extract one
representative search result for each class, which tries to obtain low redundancy
without significant loss of information coverage (Liu, 2007). Moreover, the CLUTO
software package is selected to perform the Direct clustering and extraction (Zhao and
Karypis, 2004; Zhao and Karypis, 2005). Furthermore, a random extraction strategy
(hereafter called Random) is to randomly extract £ documents in D with uniform
distribution. Moreover, the cosine similarity measure in the vector space IR model
(Salton, 1971; Manning et al., 2009) is used to obtain the degree of similarity between
web documents.

In the empirical experiments, for comparison purpose, the benchmark data in the
KDD Cup 2005 task is selected (Li ef al., 2005), which is widely used in performance
evaluation in information retrieval. Thereafter, the 111 queries provided by KDD Cup
2005 data are chosen as the search keywords in Google. For comparison, the
experiments were conducted with extraction size k2 = 10, 20, and 30, respectively,
which approximately represent one, two, and three web pages of search results. For
Random strategy, in order to narrow the deviations, the listed values are the means of
50 1ID (Independently Identically Distributed) extractions. Note that we conducted the
experiments on a 3.00 GHz 2.96 Gb RAM machine running Microsoft Windows XP
Professional, and used Java language. For obtaining and analyzing the contents of web
pages provided by Google, we used Apache Lucene, HTML parser and http client
packages and APIs.

Figures 1 to 3 show the coverage rates and redundancy rates of extracted search
results by Google-k, Clustering and Random, with 2 = 10, 20 and 30, respectively.

Figures 1 to 3 show that, first, the coverage rates of Clustering were the highest and
its redundancy rates were the lowest in most cases, meaning that Clustering could
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extract representative search results effectively, specifically on information coverage
and redundancy. Second, roughly, both on coverage rate and redundancy rate,
Google-k seems to perform the worst compared with Clustering and Random strategies
(i.e. the lowest coverage rates and highest redundancy rates in most cases), while
Random presents a neutral performance both on information coverage and
redundancy, which is also consistent with intuition. Further, with the increase of %,
both of these two rates of the three strategies would keep increase, since the larger the
subset is, the higher possibility to cover more information and generate more
redundancy, which are also consistent to the properties discussed in Section 3.

To retrieve a more reliable analysis on the evaluation of coverage measure and
redundancy measure on the three strategies, i.e. Google, Clustering and Random. A
paired #test is conducted on the empirical data experiments on 111 queries with
k =10, 20 and 30. Table I shows the statistical analysis results.

The statistical results in Table I show that, coverage rates of Clustering strategy is
significantly higher than those of Google and Random strategies, while redundancy
rates of Clustering strategy are significantly lower than those of Google and Random
strategies, which are consistent with the theoretical analysis and above experimental
results.
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Figure 2.
The coverage rates and
redundancy rates (k = 20)

Figure 3.
The coverage rates and
redundancy rates (k = 30)
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Table I.

Paired t-test on coverage
rates and redundancy
rates (k = 10, 20 and 30)

Extraction size Measures Assumptions t-test value Significance
k=10 Coverage Clustering > Google-k 13.758 e
Clustering > Random 2.218 *
Redundancy Clustering < Google-k 16.196 o
Clustering < Random 5.856 o
k=20 Coverage Clustering > Google-k 19.745 e
Clustering > Random 7.227 o
Redundancy Clustering < Google-k 20.786 o
Clustering < Random 8.502 o
k=30 Coverage Clustering > Google-k 19.942 o
Clustering > Random 8.361 e
Redundancy Clustering < Google-k 18.851 * *x
Clustering < Random 8.903 o

Notes: “p < 0.05; “™p < 0.01; ***p < 0.001

Additionally, by setting 8 = 0 (100% preference to coverage), 0.5, 1 (equal preference
to coverage and non-redundancy), 2, 10 and 100 (almost 100 per cent preference to
non-redundancy), more experiments were conducted to further examine the
correspondingly RFg values (k= 10, 20, 30), which were also consistent with
Figures 1 and 3. Therefore, as discussed previously, the proposed coverage measure,
redundancy measure, as well as RFz measure, could help effectively evaluate the
quality of IR in light of combining users’ preferences on information coverage and
redundancy in search results.

5. Conclusion and future work

This paper has proposed a representativeness measure RF to consider two concerns
relating to the extracted small search set, i.e. coverage and redundancy, in a combined
manner. Theoretical analysis shows that the proposed coverage measure and
redundancy measure, as well as the combined RF measure can effectively evaluate the
quality of extracted set referred to a given original set of search results. Empirical
experiments with the benchmark data were conducted to compare three IR strategies,
namely Google-%, Clustering and Random, verifying the effectiveness of the proposed
measures, which are also consistent with theoretical analysis. Future studies could
center on constructing a novel IR method for extracting representative information
based on the RFz measure and conducting case study on applications in enterprise
information management.
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